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Abstract. Forecast Linear Augmented Projection (FLAP) is a post-
forecast adjustment method that can reduce forecast error variance in
multivariate time series. In FLAP, components containing information
about shared features are constructed as linear combinations of the orig-
inal time series. The forecasts of the original time series and the com-
ponents are then projected such that the linear relationship between the
historical data is enforced on the forecasts. While forecast error variance
reduction has been theoretically proven regardless of the linear combina-
tion, the empirical performance of different component types is less clear
and is examined in this paper. Components considered in this paper are
estimated by maximising measures of information and/or by minimis-
ing the dependency between components. Among other methods, using
FLAP with Principal Component Analysis is recommended for its stable
performance across settings, while Forecastable Component Analysis of-
fers a strong alternative, as demonstrated by simulations and application
to Australian tourism data.
Keywords: Forecast combinations, High-dimensional time series, Com-
ponents, Forecast reconciliation

1 Introduction

Yang et al. [2024] show that Forecast Linear Augmented Projection (FLAP) can
reduce the forecast error variance in multivariate time series forecasts. FLAP is
a post-processing framework that utilises information shared between different
series—information often overlooked by standard forecasting models. The pro-
cess involves: (1) constructing components as linear combinations of the series to
capture underlying signals; (2) generating forecasts for both the original series
and the components using arbitrary forecasting method; and (3) applying a pro-
jection to ensure that the constraints defined by the linear combinations between
the components and the series are preserved on the forecasts. This approach
provides a systematic method for improving forecast accuracy by incorporating
interdependencies between series that may otherwise be neglected.

The forecast error variance reduction property has been shown to be theoret-
ically agnostic to the choice of components. Yang et al. [2024] support this with
two key results: (1) irrespective of the weights used in the linear combinations,
the forecast error variance for each series is non-increasing as the number of
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components increases (including from 0 to 1); and (2) the condition under which
no reduction occurs is theoretically possible but rarely encountered in practice,
and even if it does arise, the effect is likely to be overshadowed by estimation
error. While any reasonable choice of components can improve forecast accuracy
in theory, the degree of improvement can vary in practice. Because the optimal
component weights are difficult to determine analytically, the authors propose
using principal component analysis (PCA, Jolliffe [2002]), which they show per-
forms better than randomly generated linear combinations on both simulated
and real data. Nevertheless, it remains unclear how to best construct components
in applied settings, as theoretical guidance is limited. This paper addresses this
issue by evaluating and comparing the performance of various components in
the FLAP framework, using simulations and Australian tourism data.

Component estimation has been regarded as an effective approach to dimen-
sion reduction, aiming to uncover simplified structures in multivariate time series
modelling. Although FLAP does not require the number of components to be
small, it can benefit from the way components summarise information about the
data-generating process. In this paper, I focus on component estimation methods
that reduce dependency between components, with some also enhancing features
relevant to forecasting. The first group includes principal component analysis
for stationary vector time series (TS-PCA, Chang et al. [2018]) and indepen-
dent component analysis (ICA, Bell and Sejnowski [1995]). The second group
includes forecastable component analysis (ForeCA, Goerg [2013]) and canoni-
cal components (CC, Box and Tiao [1977]). When dependence between compo-
nents is reduced, forecasting models can be estimated more efficiently within a
lower-dimensional parameter space, making the use of univariate models more
appealing. Likewise, components that highlight forecastable signals may improve
performance by directing the model’s focus toward patterns with greater predic-
tive value.

2 Forecast Linear Augmented Projection (FLAP)

In this section, I briefly review some key results related to FLAP. For a more
detailed discussion, see Yang et al. [2024]. The implementation of FLAP is pro-
vided by the flap package [Yang, 2024] in R [R Core Team, 2024]. Let yt ∈ Rm

be a vector of m observed time series to be forecasted. Let In to be a n × n
identity matrix. The FLAP method has three steps:

1. Construct components ct = Φyt ∈ Rp, a vector of p linear combinations
of yt. The component weights Φ ∈ Rp×m are specific to the method of the
component construction.

2. Generate forecasts of the series and the components. Define zt as the stacked
vector of the series yt and the components ct, i.e., zt =

[
y′
t, c

′
t

]′. The h-step-
ahead base forecast of zt are generated from arbitrary methods and denoted
as ẑt+h.

3. Impose the linear constraint through projection. The linear constraints Czt =
ct − Φyt = 0 where C =

[
− Φ Ip

]
hold for zt but not necessary for the
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forecast ẑt. The base forecasts are projected to produced the FLAP forecast
z̃t+h such that z̃t+h = Mẑt+h with projection matrix

M = Im+p −WhC
′(CWhC

′)−1C, (1)

where Var(zt+h − ẑt+h) = Wh is the forecast error covariance matrix.

To extract the FLAP forecast of yt and not the component, define selection
matrix Jm,p =

[
Im Om×p

]
, so the projected forecast of yt can be selected

by ỹt+h = Jz̃t+h = JMẑt+h. Yang et al. [2024] have shown that the dif-
ference between the forecast error variances of the base and FLAP forecasts,
Var(yt+h− ŷt+h)−Var(yt+h− ỹt+h) is positive semi-definite. In addition, it has
non-decreasing diagonal elements as p increases, which means FLAP does not
make forecasts worse. This provides the theoretical justification for FLAP.

In practice, the key consideration is constructing the projection matrix M in
Equation 1. I adopt a shrinkage estimator for Wh following Yang et al. [2024].
The constraint matrix C is determined by the choice of component construction
method and is the focus of this paper. Yang et al. [2024] demonstrate that for a
new component to be beneficial—beyond those already included in FLAP—the
information it introduces, as reflected in the error covariance, must not be a
linear combination of the information already captured by existing components.
Heuristically, each component should bring in new information. This is more
likely when components are uncorrelated, which motivates the use of principal
components in Yang et al. [2024], and more generally, the consideration of meth-
ods in this paper that reduce cross-dependencies among components. Building
on this same intuition, I also consider components constructed to maximise prop-
erties that are directly relevant for forecasting, so that the new information is
not only distinct, but also more strongly expressed. The next section introduces
the component construction methods examined in this paper.

3 Components
Components obtained from PCA, ForeCA, and CC analysis are uncorrelated
with each other, representing a basic level of independence. Due to space con-
straints, I do not provide a detailed introduction to PCA in this section, but
note that it constructs components by maximising variances of the components.
TS-PCA extends this idea by producing groups of components with reduced
cross-sectional and temporal correlations between different groups. ICA goes a
step further by constructing statistically independent components, representing
the strongest form of independence considered in this paper.

Forecastable Component Analysis (ForeCA) The idea of ForeCA is to
find linear combinations such that the signal in the components is most signif-
icant. This is achieved by minimising the entropy of the spectral density of the
time series, or maximising the forecastability defined as Ω (ct) = 1 − Hs,a(ct)

loga(2π)
,

where Hs,a (ct) is the Shannon entropy [Shannon, 1948] of the spectral den-
sity fc(ξ) of component ct. At minimum entropy, the spectral density of the
components concentrates around a small number of frequencies. As a result,
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components with high forecastability tend to exhibit near sine wave-like pat-
terns, making them particularly desirable for forecasting. ForeCA components
are estimated using the ForeCA package [Goerg, 2020].

Canonical Component (CC) CCs are obtained by fitting a Vector Au-
toRegressive (VAR) model on yt first, then the weight matrix Φ is generated as
the eigenvectors corresponding to the largest magnitude eigenvalues of Σ−1(yt)Σ(ŷt),
where Σ(yt) and Σ(ŷt) are the covariance matrix of the data yt and the predicted
value ŷt from the VAR model respectively. This procedure can be interpreted
as maximising the predictability of the components, defined as the ratio of ex-
plained variance to total variance in an AR process of the component. The VAR
lag is set to be 3 in the simulation, matching the true specification, and 1 in the
tourism data application, due to sample size limit.

PCA for second-order stationary vector time series (TS-PCA) Chang
et al. [2018] propose finding linear combinations of the time series such that the
resulting components can be segmented into lower-dimensional subseries that are
uncorrelated both contemporaneously and serially. This leads to a block-diagonal
structure in the autocovariance matrices of the transformed series: components
within the same block may be correlated, but components across different blocks
are uncorrelated. This is achieved by computing the eigenvectors of the estima-
tor of the sum of cross-products of the autocovariance matrices across lags,∑k0

k=0 Cov(yt+k,yt)Cov(yt+k,yt)
′, where the eigenvectors are then used as the

weights in the linear combinations. TS-PCA components are estimated using
the PCA4TS package [Chang et al., 2015].

Independent Component Analysis (ICA) ICA assumes that the process
yt consists of statistically independent latent components ct, mixed through a
linear transformation. It aims to recover these components by “demixing” the
observed process. ICA has been extensively studied; in this paper, I adopt the
information maximisation approach proposed by Bell and Sejnowski [1995]. The
ICA components are estimated using the ica package [Helwig, 2022].

4 Applications and Results
The Australian Tourism Data Set from Tourism Research Australia contains
the total number of nights spent by Australians away from home. The monthly
visitor nights are recorded for m = 77 regions from January 1998 to December
2019. An expanding window time series cross-validation is performed with a step
size of 1 and initial set of 156 observations. Base forecasts are generated from
univariate ExponenTial Smoothing (ETS) models.

In the simulation, I generate time series of length T = 400 from a m = 70
variable VAR(3) data generating process (DGP) and the performance of FLAP
with different components are evaluated. This process is repeated 220 times.
The coefficients for the VAR DGP are estimated from the first 70 series in the
Australian tourism data set. The innovations are simulated from a multivari-
ate normal distribution with an identity covariance matrix. The estimation and
simulation is performed using the tsDyn package [Fabio Di Narzo et al., 2009].
The base forecasts are generated from the univariate ARIMA model and the
dynamic factor model (DFM) following Stock and Watson [2002].



Forecast Linear Augmented Projection with Targeted Components 5

Since at most m components of a given type can be extracted from an
m-dimensional series, I supplement with components whose weights are ran-
domly generated from a normal distribution once the original components are
exhausted. For completeness, I also include a comparison with these random
components from the outset.

Simulation: ARIMA, DFM Tourism: ETS
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Figure 1: Out-of-sample MSE for base and FLAP forecasts.

The mean squared error (MSE) results are shown in Figure 1. As the
number of components increases, FLAP consistently reduces MSE relative to
the base forecasts, regardless of the component method used. In the simulation
study (left panel), ForeCA achieves the largest error reduction, significantly out-
performing the other methods. Notably, even when used with simple ARIMA
models, ForeCA quickly surpasses the base forecasts from a dynamic factor model
(DFM), thanks to its property of amplifying forecast-relevant signals. A statis-
tical test confirms that this performance gain is significant compared to the
other component methods. In contrast, in the application to Australian tourism
data (right panel), ForeCA does not clearly outperform the alternatives. Instead,
PCA yields the fastest MSE reduction. This may reflect challenges in real-world
data, such as noisy signals, structural complexity, or violations of stationarity
assumptions. Still, ForeCA does not perform poorly. It performs comparably to
other methods, including random linear combinations of the series.

In conclusion, PCA is recommended as a robust and computationally efficient
default choice for use with FLAP, given its stable performance across settings.
ForeCA, however, remains a promising alternative when the data conditions are
favourable.



6 Yangzhuoran Fin Yang

Acknowledgement
I thank Daniele Girolimetto for the kind invitation to present this work at the
2025 Italian Statistical Society Conference (SIS 2025) and for the related dis-
cussion. I also thank Rob Hyndman, George Athanasopoulos, and Anastasios
Panagiotelis for early conversations that contributed to the development of the
idea. I acknowledge the use of OpenAI’s ChatGPT-4o and ChatGPT-4o mini for
typographical correction. These tools were used solely for lanfuage refinement.
All intellectual contributions and final edits were made by me.

References
Yangzhuoran Fin Yang, George Athanasopoulos, Rob J Hyndman, and Anasta-
sios Panagiotelis. Forecast Linear Augmented Projection (FLAP): A free lunch
to reduce forecast error variance. arXiv [stat.ME], 2024.
Ian T Jolliffe. Principal Component Analysis. Springer Series in Statistics.
Springer, New York, NY, 2 edition, 2002. ISBN 9780387954424. doi: 10.1007/
b98835.
Jinyuan Chang, Bin Guo, and Qiwei Yao. Principal component analysis for
second-order stationary vector time series. Ann. Stat., 46:2094–2124, 2018. doi:
10.1214/17-AOS1613.
Anthony J Bell and Terrence J Sejnowski. An information-maximization ap-
proach to blind separation and blind deconvolution. Neural Comput., 7(6):
1129–1159, 1995. doi: 10.1162/neco.1995.7.6.1129.
Georg Goerg. Forecastable Component Analysis. In Proceedings of the 30th
International Conference on Machine Learning, volume 28, pages 64–72, Atlanta,
Georgia, USA, 2013.
G E P Box and G C Tiao. A canonical analysis of multiple time series. Biometrika,
64(2):355–365, 1977. doi: 10.1093/biomet/64.2.355.
Yangzhuoran Fin Yang. flap: Forecast Linear Augmented Projection, 2024. R
package version 0.2.0. doi: 10.32614/CRAN.package.flap.
R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2024.
C E Shannon. A mathematical theory of communication. Bell Syst. Tech. J.,
27(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.
Georg M. Goerg. ForeCA: An R package for Forecastable Component Analysis,
2020. R package version 0.2.7. doi: 10.32614/CRAN.package.ForeCA.
Jinyuan Chang, Bin Guo, and Qiwei Yao. PCA4TS: Segmenting Multiple Time
Series by Contemporaneous Linear Transformation, 2015. R package version 0.1.
doi: 10.32614/CRAN.package.PCA4TS.
Nathaniel E. Helwig. ica: Independent Component Analysis, 2022. R package
version 1.0-3. doi: 10.32614/CRAN.package.ica.
Antonio Fabio Di Narzo, Jose Luis Aznarte, and Matthieu Stigler. tsDyn: Time
series analysis based on dynamical systems theory, 2009. R package version 0.7.
doi: 10.32614/CRAN.package.tsDyn.
James H Stock and Mark W Watson. Macroeconomic forecasting using diffusion
indexes. J. Bus. Econ. Stat., 20(2):147–162, 2002. doi: 10.1198/073500102317351921.


