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Abstract—The reduced-rank regression (RRR) model is widely
used in data analytics where the response variables are believed
to depend on a few linear combinations of the predictor variables,
or when such linear combinations are of special interest. In
this paper, we will address the RRR model estimation problem
by considering two targets which are popular especially in big
data applications: i) the estimation should be robust to heavy-
tailed data distribution or outliers; ii) the estimation should
be amenable to large-scale data sets or data streams. In this
paper, we address the robustness via the robust maximum
likelihood estimation procedure based on Cauchy distribution
and a stochastic estimation procedure is further adopted to deal
with the large-scale data sets. An efficient algorithm leveraging on
the stochastic majorization minimization method is proposed for
problem-solving. The proposed model and algorithm is validated
numerically by comparing with the state-of-the-art methods.

Index Terms—Multivariate regression, low-rank, heavy-tails,
outliers, stochastic optimization, majorization minimization,
large-scale optimization, adaptive algorithm.

I. INTRODUCTION

The reduced-rank regression (RRR) [1], [2] model is a
multivariate linear regression model where the coefficient
matrices can be reduced-rank (a.k.a. low-rank). The concept
of RRR was first brought up in [3]. For a vector of dependent
variables y ∈ RP and the vectors of independent variables
x ∈ RQ and z ∈ RR, a RRR model is written as follows:

y = µ+ Cx + Dz + ε
= µ+ ABTx + Dz + ε,

(1)

where µ ∈ RP is the constant intercept, C ∈ RP×Q is
the low-rank coefficient matrix for x with rank(C) = r ≤
min {P, Q}, D ∈ RP×R is the coefficient matrix for z, and
ε is the innovation with mean 0 and covariance Σ. Since
C is low-rank, we have C = ABT with A ∈ RP×r and
B ∈ RQ×r, which offers effective dimension reduction and
improves the model interpretability. Matrix A is commonly
named the exposure matrix and B is called the factor matrix
with the linear combinations BTx being the latent factors.
When RRR is used in autoregressive time series modeling, it
is also referred to as the vector error correction model (VECM)
[4]. RRR is widely used in many fields related to data analytics
like wireless systems [5]–[8], financial econometrics [9]–[13],
computer vision [14], environmental engineering [15], etc.

The classical methods for RRR/VECM estimation are the
ordinary least squares estimation (LSE) [3], [4] and Gaussian
maximum likelihood estimation (MLE) [16], where simple
closed-form solutions can be attained. In many applications,
the data to analyze often exhibit features of heavy-tails or
outliers [17]. Such features contradict the data distribution

assumption typically made for the theoretical analysis and
estimation procedures in ordinary LSE and Gaussian MLE,
hence leading to serious consequences in the estimated models
[18], [19]. For example, in finance the common market be-
haviour and the proper portfolio design may be easily masked
or misrepresented by the outlier data (e.g., bankruptcy of big
corporations or financial crisis). In [20], a robust RRR (RRRR)
estimation procedure against outliers was put forward based
on nonconvex loss functions and mean-shift modelling. In
[21], the authors proposed to estimate a robust VECM via an
MLE procedure based on the Cauchy distribution, which is a
conservative representative of the heavy-tailed distributions to
better fit the heavy-tails and dampen the influence of outliers.
In this paper, inspired by [21], we will tackle the heavy-
tailedness via robust estimation based on Cauchy MLE.

In the literature of model estimation, a path of samples are
always assumed available and deterministic batch estimation
will be employed. When processing large-scale data sets or
data streams, however, the deterministic estimation scheme
becomes impractical owing to the requirement that the whole
data set would be available at each iteration of the algorithm
(the data collection process commonly spans over a long
period) and dealing with a large-scale data set will make the
algorithm computationally expensive. In view of this, a natural
research question to ask is: Can we create a continuously
updated scheme for the model parameter estimation? There
has been a strong interest for online estimation procedure,
which makes it possible to estimate the parameters of a data
model without storing the whole data set. An online method
was proposed in [22] using ordinary LSE for VECM but
it lacks robustness. To deal with online estimation for the
RRRR problem, the stochastic estimation techniques [23], [24]
targeting the objective function with an expectation over a
random variable will be adopted in this paper.

The classical approach to solve the stochastic optimization
problem is the sample average approximation (SAA) method
[25]–[28], which has played an important role in machine
learning and signal processing. However, this approach could
be computationally costly since it requires an iterative pro-
cedure at each iteration especially when the SAA subprob-
lem is nonconvex. To overcome this problem, the stochastic
majorization minimization (SMM) (a.k.a. stochastic upper-
bound minimization) method [29] was proposed to solve the
subproblem in each iteration by minimizing a well-chosen
surrogate function and convergence to stationary points can
be guaranteed. In [30], a penalized least squares estimation



problem was studied based on the SMM method. In this paper,
to deal with the nonconvex RRRR estimation and to tackle the
large-scale data sets or data streams we design an algorithm
based on the SMM method.1 The efficiency of the proposed
algorithm is demonstrated numerically by comparing to the
state-of-the-art methods.

II. PROBLEM FORMULATION

A. Robustness Pursuit by Cauchy Log-likelihood Loss
To take into account the heavy-tailed property and to

mitigate outliers from the underlying data generating process,
we adopt the multivariate Cauchy distribution for robustness
pursuit [21]. Assume the innovation ε ∈ RP in (1) follows
a multivariate Cauchy distribution, i.e., ε ∼ C(0,Σ) with
Σ ∈ SP++, then its probability density function (PDF) is given
as follows:

f(ε) = Γ[(1+P )/2]
Γ(1/2)πP/2 det(Σ)1/2

(
1 + εTΣ−1ε

)− 1+P
2 , (2)

where Γ(·) denotes the gamma function and det(·) is the
determinant.

Considering the RRR model (1), the negative log-likelihood
loss function for one sample ξ , {y,x, z} is given by

`(θ, ξ)

, 1
2 log det(Σ) + 1+P

2 log
[
1 + (y − µ−ABTx

−Dz)TΣ−1(y − µ−ABTx−Dz)
]
,

(3)

where θ , {µ,A,B,D,Σ} is the parameter set to be
estimated2, θ ∈ Θ , {Σ � 0}, and the constant factors
from the Cauchy PDF were removed.
B. Problem Formulation for Online RRRR

Based on the specified log-likelihood loss above, the online
RRRR problem is readily given as follows:

minimize
θ

[
L(θ) , Eξ[`(θ, ξ)]

]
subject to θ ∈ Θ,

(4)

which is a constrained nonconvex stochastic optimization
problem. To efficiently solve this problem, we will resort to
an iterative numerical optimization method called stochastic
majorization minimization [29] to be discussed in the next
section. It is also worth mentioning that `(θ, ξ) can be
generalized to other robust loss functions like the Huber loss
[31] and the algorithm described later still apply, but due to
space limitation details will not be provided in this paper.

III. SOLVING THE ONLINE RRRR PROBLEM VIA SMM

A. The Stochastic Majorization Minimization (SMM) Method

In stochastic optimization, people are not interested in
the minimization of an empirical loss on a finite data set,
but instead in minimizing an expected loss [24]. A general
stochastic optimization problem of function f(x) is given by

minimize
x

[
f(x) , Eξ[g(x, ξ)]

]
subject to x ∈ X ,

1It should be noted that the proposed algorithm is also applicable to the
non-robust regression case, where [22] is a special case.

2The rank of A can be determined based on prior knowledge or statistical
analysis, however discussion on this topic is beyond the scope of this paper.

where X is a bounded closed convex set; ξ is a random vector
drawn from a set Ξ , and g(x) is a real-valued function in x. A
classical approach for solving the above optimization problem
is the SAA method [25], [26]. At each iteration of the SAA
method, a new realization of the random vector ξ is obtained
and the optimization variable x is updated by solving

x(k) ← arg minx∈X
1

N(k)

∑N(k)

i=1 g(x, ξi),

where N (k) is the considered sample size in the kth iteration.
The SAA method is essentially an online optimization scheme
since the sampling data is continuously incorporated into the
problem and the optimization variables are hence updated
in each iteration. However, the above SAA subproblem can
be computationally expensive, say, when g(x, ξ) is highly
nonconvex. The SMM method [29] overcomes this difficulty
through replacing g(x, ξ) by a well-chosen majorizing surro-
gate function ḡ(x, x(k), ξ) at x(k) which can be much easier
to optimize. Specifically, the update step is summarized as

x(k) ← arg minx∈X
1

N(k)

∑N(k)

i=1 ḡ(x, x(k), ξi),

where the surrogate function ḡ(x, x(k), ξi) satisfies

ḡ(x(k), x(k), ξ) = g(x(k), ξ), ∀x(k) ∈ X , ∀ξ ∈ Ξ,
ḡ(x, x(k), ξ) ≥ g(x, ξ), ∀x, x(k) ∈ X , ∀ξ ∈ Ξ.

To ensure convergence, the surrogate function ḡ(x, x(k), ξ) is
commonly required to be chosen such that the global optimal
solution can be attained by solving the SMM subproblem, for
instance, ḡ(x, x(k), ξ) should be strongly convex in x.
B. Solving the Online RRRR Problem via SMM

In this section, we will solve the problem in (4) based on
the SMM method. It is easy to see that the key of using
SMM is to find a good majorizing function ¯̀(θ,θ(k), ξ) for
the loss `(θ, ξ) in each iteration, which will be detailed in
the following. The loss function `(θ, ξ) in (3) is nonconvex
in θ. To find a surrogate function for it via the majorization
minimization technique, we first introduce the following result.

Lemma 1 (Linear Majorization [21]): For a given point
x0 ∈ R, the function log (1 + x) can be linearly majorized
in the following way

log (1 + x) ≤ 1
1+x0

x+ log (1 + x0)− x0

1+x0
,

where the equality is attained if and only if x = x0.
Based on Lemma 1, at iterate θ(k) the second term in

`(θ, ξi) (given the sample ξi = {yi,xi, zi}) can be majorized
as in (5). Then combining the first term in `(θ, ξi) with (5),
we have the majorizing function as follows:

¯̀(θ,θ(k), ξi) ,
1
2 log det (Σ)+ 1+P

2

(
ȳ

(k)
i −

√
w

(k)
i µ−ABT x̄

(k)
i −Dz̄

(k)
i

)T
×Σ−1

(
ȳ

(k)
i −

√
w

(k)
i µ−ABT x̄

(k)
i −Dz̄

(k)
i

)
+ const.,

where we have defined ȳ
(k)
i ,

√
w

(k)
i yi, x̄

(k)
i ,

√
w

(k)
i xi,

and z̄
(k)
i ,

√
w

(k)
i zi. Considering all the N (k) available sam-

ples in the kth iteration, the objective of the SMM subproblem
is accordingly given as in (6).



1+P
2 log

[
1 + (yi − µ−ABTxi −Dzi)

TΣ−1(yi − µ−ABTxi −Dzi)
]

≤ 1+P
2 w

(k)
i (yi − µ−ABTxi −Dzi)

TΣ−1(yi − µ−ABTxi −Dzi) + const.,
(5)

where w(k)
i ,

[
1 + (yi − µ(k) −A(k)BT (k)xi −D(k)zi)

TΣ−(k)(yi − µ(k) −A(k)BT (k)xi −D(k)zi)
]−1

.

L̄(θ,θ(k)) , 1
N(k)

∑N(k)

i=1
¯̀(θ,θ(k), ξi)

= 1
2 log det (Σ)+ 1+P

2

∑N(k)

i=1

(
ȳ

(k)
i −

√
w

(k)
i µ−ABT x̄

(k)
i −Dz̄

(k)
i

)T
Σ−1

(
ȳ

(k)
i −

√
w

(k)
i µ−ABT x̄

(k)
i −Dz̄

(k)
i

)
+const.

= 1
2 log det (Σ)+ 1+P

2 tr
[(

Ȳ(k)−µ
√

w(k)
T
−ABT X̄(k)−DZ̄(k)

)T
Σ−1

(
Ȳ(k)−µ

√
w(k)

T
−ABT X̄(k)−DZ̄(k)

)]
+const.,

(6)
where w(k) , [w

(k)
1 , . . . , w

(k)

N(k) ]
T ∈ RN(k)

,
√

(·) is the squared-root operator and is applied elementwise, Ȳ ,

[ȳ1, . . . , ȳN(k) ] ∈ RP×N(k)

, X̄ , [x̄1, . . . , x̄N(k) ] ∈ RQ×N(k)

, and Z̄ , [z̄1, . . . , z̄N(k) ] ∈ RR×N(k)

.

Finally, with the objective function L̄(θ,θ(k)), we get the
SMM subproblem to be solved in each iteration as follows:

minimize
θ

L̄(θ,θ(k))

subject to Σ � 0,
(7)

which is still highly nonconvex in θ; however, by carefully
examining the problem structure, the global optimal solution
can be attained in closed form and we give the details in the
next section.
C. Solving the Subproblem in SMM

We first examine the first-order optimality conditions for
variables [µ,D] and Σ. The partial derivative with respect to
[µ,D] is given as follows:

∇[µ,D]L̄(θ,θ(k)) = −(1 + P )Σ−1
(
Ȳ(k) − µ

√
w(k)

T

−ABT X̄(k) −DZ̄(k)
)[√

w(k), Z̄(k)T
]
.

For notational simplicity, we will denote Q(k) ,[√
w(k), Z̄(k)T

]T
hereafter. By setting the above equation

to be zero, for fixed A and B the optimal value for [µ,D] is[
µ,D

]
(A,B) =

(
Ȳ(k) −ABT X̄(k)

)
Q(k)

(
Q(k)Q(k)T

)−1
.

(8)
Then we can have the following relation

Ȳ(k) − µ
√

w(k)
T
−ABT X̄(k) −DZ̄(k)

= Ȳ(k) −ABT X̄(k)

−
(
Ȳ(k) −ABT X̄(k)

)
Q(k)T

(
Q(k)Q(k)T

)−1
Q(k)

= Ȳ(k)P(k) −ABT X̄(k)P(k),

(9)

where we have defined the projection matrix P(k) , IN −
Q(k)T

(
Q(k)Q(k)T

)−1
Q(k) with IN to be the identity matrix.

Considering the relation defined in (9), the partial derivative
with respect to Σ is given as follows:

∇ΣL̄(θ,θ(k)) = N(k)

2 Σ−1 − 1+P
2 Σ−1

(
Ȳ(k)P(k)

−ABT X̄(k)P(k)
)(

Ȳ(k)P(k) −ABT X̄(k)P(k)
)T

Σ−1,

and then the optimal Σ is accordingly computed as

Σ (µ,A,B,D)
= 1+P

N(k)

(
Ȳ(k)P(k) −ABT X̄(k)P(k)

)
×
(
Ȳ(k)P(k) −ABT X̄(k)P(k)

)T
.

(10)

Substituting (8) and (10) into (6), the loss function becomes

L̄(θ,θ(k))

= N(k)

2 log det
[

1+P
N(k)

(
Ȳ(k)P(k) −ABT X̄(k)P(k)

)
×
(
Ȳ(k)P(k) −ABT X̄(k)P(k)

)T ]
+ const.

(11)

To simplify the notation, we further denote N(k) , Ȳ(k)P(k)

and M(k) , X̄(k)P(k) hereafter. Finally, the SMM subprob-
lem becomes the minimization of L̄(θ,θ(k)) in (11) with
respect to A and B. Since log(x) is a monotonically increasing
function in x, the minimization problem is equivalent to

minimize
A, B

det
[(

N(k) −ABTM(k)
)(

N(k) −ABTM(k)
)T ]

,

which is a matrix factorization problem with the determinant
loss function. This problem is still nonconvex, but an analytical
solution can be attained through singular value decomposition.

Proposition 1 ( [16], [32]): Let N ∈ RP×N be of rank P
and M ∈ RQ×N be of rank Q. Let A ∈ RP×r and B ∈ RQ×r
be of rank r. Define Rmm , MMT , Rmn , MNT , Rnm ,
NMT = RT

mn, and Rnn , NNT . Then the minimum of
det
[(

N−ABTM
)(

N−ABTM
)T ]

with respect to A and
B is obtained for

A? = RnmR
− 1

2
mmUr and B? = R

− 1
2

mmUr, (12)

where Ur ∈ RQ×r contains the left singular vectors
corresponding to the r largest singular values of matrix
R
− 1

2
mmRmnR

− 1
2

nn sorted in nonincreasing order. (The R
− 1

2
mm is

some matrix satisfying R
− 1

2
mmRmmR

− 1
2T

mm = IQ and the same
applies to R

− 1
2

nn .)
Finally, based on Proposition 1 we get the optimal solu-

tions A(k+1) and B(k+1) and furthermore the updates for[
µ(k+1),D(k+1)

]
and Σ(k+1) can be obtained from (8) and

(10), respectively.

D. The Overall SMM-based Algorithm

To solve the original online RRRR problem in (4), based
on SMM it suffices to solve the subproblem in (7) iteratively
with a closed-form solution update in each iteration.
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Fig. 1. Convergence comparisons for objective value 1
N(k)

∑N(k)

i=1 `(θ, ξi).

Algorithm 1 summarizes the whole procedure.3

Algorithm 1: Online RRRR via SMM
Input: Training data {ξi}∞i=1, the initial parameter
θ(0) ∈ Θ, and k = 1;

for i = 1, . . . do
Calculate {w(k), Ȳ(k), X̄(k), Z̄(k),Q(k),P(k)}

based on the parameter θ(k) and data {ξi}N
(k)

i=1 ;
Calculate {M(k),N(k),R

(k)
mm,R

(k)
mn,R

(k)
nn , };

Compute r left singular vectors of R
− 1

2
mmRmnR

− 1
2

nn ;
Update θ(k+1);
k ← k + 1;

Output: θ(k) = {µ(k), A(k), B(k), D(k),Σ(k)}.

Notice that although in this online estimation algorithm the
update of the parameters depends on all the past realizations,
all the required information can be encoded into several
matrices, which can be updated recursively.

IV. NUMERICAL SIMULATIONS

In this section, we numerically evaluate the performance
of our proposed model and algorithm. The simulation is
conducted on a server with Intel(R) Xeon(R) CPU E5-2643 v4
(6x 3.40 GHz) and 128 GB RAM. A RRR model is specified
with P = Q = 10 and r = R = 1. A path of 1000 samples is
generated where innovations follow a Student’s t-distribution
with degree of freedom of 3 mimicking the real data scenarios.
In the online estimation, we start with 25 samples and 1 sample
is added in each iteration.

We first compare our proposed SMM-based algorithm with
the benchmark SAA-based algorithm for solving the RRRR
problem (4). Since the SAA subproblem is nonconvex, we
solve it using both the embedded general-purpose solver in R
“optim” [33] and a problem-tailored deterministic majoriza-
tion minimization (MM) algorithm with 10 subiterations. The
convergence comparisons on the average objection function
value of 30 Monte Carlo runs is shown in Fig. 1. We can see
that SMM-based algorithm converges faster than the SAA-
based algorithms (“SAA - solver” and “SAA - MM”), and

3To promote reproducible research, an implementation for this algorithm
in R [33] is publicly available in the package RRRR [34].
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TABLE I
COMPARISONS ON AVERAGE RUN TIME (IN SECS)

(P, Q) (5, 5) (10, 10) (20, 20) (30, 30)
SAA - MM 48.0 (16.8) 69.9 (17.7) 153.2 (27.6) 264.9 (27.2)
SMM 17.2 (6.85) 25.4 (7.49) 54.0 (11.04) 88.5 (11.06)

this can be explained by the double-loop nature of the SAA-
based algorithms. In particular, “SAA - MM” tends to overfit
at the beginning and takes more time to converge to the same
level as “SMM”.

We further compare the estimation error between the true
parameters and the estimated ones measured by the relative
estimation error (REE) (for parameter ABT ) defined as

REE[ABT ] ,
||A(k)B(k)T − [ABT ]TRUE||2F

||[ABT ]TRUE||2F
.

We show the average REE of 30 Monte Carlo runs for ABT in
Fig. 2. The estimation result form non-robust Gaussian MLE,
which is the same as the ordinary LSE, is also reported. It
can be seen that the Cauchy assumption can attain a better
estimation result in comparison to the non-robust estimation
procedures, although the deficiency of “SAA - solver” prevents
it from converging to the same level as other algorithms. A
crossover of the convergence curves of “SAA - MM” and
“SMM” can be found at the beginning, indicating a larger
improvement over REE by “SAA - MM” than “SMM” in
the first several iterations. However, the “SMM” algorithm
eventually converges faster than both “SAA - MM” and “SAA
- solver”.

To show the computational efficiency of the proposed SMM-
based algorithm, we compare the estimation time with varying
the parameter dimensions where P = Q and r = R = 1 based
on 100 Monte Carlo simulations. In Table I, the average run
time measured in seconds is presented with the standard error
presented in parentheses. For all specified problem cases, the
SMM algorithm consistently runs faster and more stable than
the SAA method and scales well with the dimension.

V. CONCLUSIONS

In this paper, we have discussed the online robust reduced-
rank regression problem. An efficient algorithm based on
the stochastic majorization minimization method has been
proposed. The effectiveness of the model and algorithm has
been demonstrated through simulation simulations.
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