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Additive outlier
Ve =7t Ut
Ut = o1t + palto + -+ -+ oplt_p + &t

Innovative outlier

yt = f}/t + 901yt—1 + ...+ gppyt_p + €t

Objective function
min SSR(e, ) + plv; A)

~¢ is nonzero when observation t is an outlier.



Optimisation: Iteration 0
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Optimisation: Iteration 1
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Optimisation: Iteration 6
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Non-robust ARMA
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Performance: Model estimation
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Performance: Outlier identification
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8 1.00-
=
8 0.75
o
(o)
> 0.50-
©0.25-
o
o
O 0.00- . ; i . . .
0.01 0.05 0.10.01 0.05 0.1

Proportion of outliers

Model = Penalised regression -+ robustarima



