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Forecast Linear Augmented Projection (FLAP)

A model-independent post-forecast adjustment
method that can reduce forecast error variance.

Averaging indirect forecasts from linear
combinations (components)
Projecting forecasts of augmented series
Free lunch: no additional data or
information needed

Question
What components?
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What to expect

Intuition with data

Method

Properties

Choice of components

Empirical applications and simulation
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Australian tourism data

The data include tourism information on
seven states and territories which can be
divided into 77 regions

▶ For example, Melbourne, Sydney, East Coast

Visitor nights
The total number of nights spent by Australians
away from home recorded monthly
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Melbourne and Sydney
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Intuition

Observation
1. Similar patterns are shared by different series.
2. Better signal-noise ratio in the linear
combination.

One step further
Finding components that
1. are easy to forecast;
2. can capture the common signals;
3. can improve forecast of original series.
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Series yt ∈ Rm
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Components ct = Φyt ∈ Rp
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FLAP

zt =
yt
ct

 z̃t+h = Mẑt+h

ỹt+h = Jz̃t+h = JMẑt+h

M = Im+p −WhC′(CWhC′)−1C
J = Jm,p =

[
Im Om×p

]
C =

[
− Φ Ip

]
Wh = Var(zt+h − ẑt+h)
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Forecasts and FLAP of series
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Properties of FLAP

1 The variance reduction is positive
semi-definite:

Var(yt+h − ŷt+h) − Var(yt+h − ỹt+h)
= JWhC′(CWhC′)−1CWhJ′

(1)

2 The forecast error variance reductions,
i.e. the diagonal elements of Equation 1 is
non-decreasing as p increases.

3 The projection is the solution to separable
optimisation objective functions that
minimise forecast error variance. 12



Properties of FLAP

1 The forecast error variance is reduced with
FLAP

2 The forecast error variance monotonically
decreases with increasing number of
components

3 The forecast projection is optimal to
achieve minimum forecast error variance of
each series
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In practice, we need to

ỹt+h = Jz̃t+h = JMẑt+h

M = Im+p −WhC′(CWhC′)−1C

Wh = Var(zt+h − ẑt+h)
C =

[
− Φ Ip

]
Estimate Wh
Construct Φ
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Estimation of Wh

Shrinking variance towards their median
(Opgen-Rhein and Strimmer 2007) and shrinking
covariance towards zero (Schäfer and Strimmer
2005).

The shrinkage estimator is

Positive definite, and
Numerically stable.

In empirical applications, we assume

Ŵshr
h = ηhŴ

shr
1 .
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Components: construction of Φ

1 Reduce dependency between components
▶ TS-PCA (Chang, Guo, and Yao 2018)
▶ ICA (Bell and Sejnowski 1995)

2 also Emphasise features relevant to
forecasting

▶ PCA (Jolliffe 2002)
▶ CC (Box and Tiao 1977)
▶ ForeCA (Goerg 2013)

Simulation
Generating values from a normal distribution
and normalising them to unit vectors
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Reduce dependency between components

Principal component analysis for stationary
vector time series (TS-PCA)
Linear combinations of the time series such that
the resulting components can be segmented
into lower-dimensional subseries that are
uncorrelated both contemporaneously and
serially.

Independent component analysis (ICA)
Statistically independent latent components.
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Emphasise features relevant to forecasting
Principal component analysis (PCA)
Maximise variance

Canonical Component analysis (CC)
Maximise the ratio of explained variance to
total variance in an AR process of the
component.

Forecastable component analysis (ForeCA)
Maximised forecastability Ω (ct) = 1 − Hs,a(ct)

loga(2π) ,
where Hs,a (ct) is the Shannon entropy (Shannon
1948) of the spectral density of the component.
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Forecastable component analysis (ForeCA)
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Tourism

Tourism: ETS
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Simulation

Data generating process (DGP): VAR(3) with
m = 70 variables
Sample size: T = 400
Number of repeated samples: 220
Base model: ARIMA and DFM
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Simulation

Simulation: ARIMA, DFM
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R Package flap

You can install the stable version from CRAN
## CRAN.R-project.org/package=flap
install.packages("flap")

or the development version from Github
## github.com/FinYang/flap
# install.packages("remotes")
remotes::install_github("FinYang/flap")
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Contact

yangzhuoranyang.com/talk/sis2025/

yangzhuoran.yang@maastrichtuniversity.nl
yangzhuoranyang.com
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